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In 1985, Umezawa and co-workers at the Kitasato Institute 
(Tokyo) reported the isolation and planar structures of the 
trienomycins A-E, a new family of ansamycin antibiotics 
produced in the culture broth of Streptomyces sp. No. 83-16.' 
Bioassays revealed significant in vitro cytotoxicity against HeLa 
S3 cells;2 (-l-)-trienomycin A (1), the most potent congener, is 
also active against human PLC hepatoma (IC50 0.01 ,wg/mL) 
and the L-5178Y murine leukemia cell line.3 A sixth compound, 
(-r-)-trienomycin F (2), was discovered in our laboratories in 
1990.45 
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As prelude to total synthesis, we determined the relative and 
absolute stereochemistries of the trienomycins via degradation 
to (+)-trienomycinol (5, Scheme 1), in conjunction with 
extensive 1H and 13C NMR studies and the partial syntheses of 
(+)-trienomycins A and F from 5.4-5 The trienomycin skeleton 
embodies an (7i,7i,7i)-triene within a 21-membered lactam ring; 
functionalized C(Il) side chains differentiate the individual 
structures. The closely related mycotrienins I and II (3 and 4) 
were isolated from the fermentation broth of 5. rishiriensis T-23, 
which also produces (-r-)-trienomycin A (1) as a minor constitu­
ent.6 We established the complete relative and absolute 
stereochemistries of the mycotrienins by chemical conversion 
of 1 to 3 and 4.7 

Retrosynthetically we envisioned (+)-trienomycinol (5), or 
a protected form thereof, as an advanced precursor to each of 
the trienomycins and in turn the mycotrienins (Scheme 1). A 
novel bis-olefination reaction of dialdehyde 6 with Wittig 
reagent 7 would install the (Tj.Ts.Tij-triene unit of 5 and thereby 
effect macrolactamization.8 Dialdehyde 6 would arise via 
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alkylation of sulfone 8 with iodide 9. A key consideration in 
this scenario was selection of an appropriate protecting group 
(P) for the secondary amide (vide infra). Herein we describe 
the first total syntheses of trienomycins A and F (1 and 2).9 

Our point of departure for the phenolic subunit 8 was benzoic 
acid 10 (Scheme 2), readily available from 3,5-dinitrobenzoic 
acid in two steps.10 Borane reduction, conversion to the benzylic 
bromide, displacement with sodium benzenesulfinate, and 
protection of the phenol as the ferf-butyldiphenylsilyl (BPS) 
ether then provided sulfone 11." Reduction of the nitro group 
(H2, Pd/C), acylation of the resultant amine with lactone (+)-
12,12 and masking of the primary hydroxyl as the fert-butyl-
dimethylsilyl (TBS) ether completed construction of (+)-8.n 
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Synthesis of allylic iodide 9 began with an Evans aldol 
addition of (+)-1313 to methacrolein, affording exclusively the 
desired syn diastereomer (Scheme 3).13'14 Silylation (TBS), 
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hydrolysis (LiOOH, 3:1 THF/H20, O 0C, 2 h)15 to the acid (with 
full recovery of the chiral auxiliary), preparation of the Weinreb 
amide [l,l'-carbonyldiimidazole (CDI); iV,0-dimefhylhydoxy-
lamine'HCl],16 and DIBAL reduction17 cleanly afforded alde­
hyde (+)-14n (66% yield, five steps). Allylboration via the 
Brown protocol18 then yielded predominantly the requisite 
alcohol as a 12.5:1 mixture of diastereomers. Separation of 
the epimers, desilylation, and acetonide protection19 furnished 
diene (+)-15.u Ozonolysis, chemoselective reduction of the 
derived aldehyde with lithium tris[(3-ethyl-3-pentyl)oxy]alu-
minum hydride,20 and silylation of the resultant alcohol smoothly 
generated ketone (+)-16.n Following conversion to the acety­
lene via the procedure of Negishi,21 cuprate addition to the 
derived alkynyl ester (—)-17u provided exclusively the desired 
(Z) olefin.22-23 DIBAL reduction then afforded the allylic 
alcohol, which was readily converted to the chloride and in turn 
to the unstable iodide (—)-9. 

Without delay, iodide (—)-9 was coupled with (+)-8; reduc­
tive desulfonylation then furnished adduct (+)-18n in excellent 
yield (86% over three steps from the allylic chloride) (Scheme 
4). At this juncture, amide protection was required to block 
formation of the iV-acyl hemiaminal, which did not undergo the 
bis-Wittig reaction. The choice of protecting group proved to 
be unexpectedly critical: attempted olefination of the Boc 
derivative led to /^elimination of methoxy, whereas p-meth-
oxybenzyl and 2-(trimethylsilyl)ethoxymethyl (SEM) moieties 
could not be removed without extensive decomposition under 
oxidative (e.g., DDQ, CAN) or acidic conditions, respectively. 
Turning next to functionalities susceptible to reductive cleavage, 
we noted that Evans successfully utilized the 2,2,2-trichloro-
ethoxymethyl unit for hydroxyl protection.24 Moreover, Solladi6 
established that (Zs.Zs.î -trienes can survive exposure to Na-
(Hg),25 the reagent Evans employed to fragment the /3-chloro-
ethyl acetal. Treatment of (+)-18 with chloromethyl 2,2,2-
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Lett. 1990, 31, 7099. 
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trichloroethyl ether,26 removal of the three silyl groups (TBAF), 
and oxidation with pyridine* SO3 afforded dialdehyde (-r-)-6,u 

the key cyclization substrate. Addition of NaHMDS to a 
mixture of (+)-6 and bis-Wittig salt 7 (DMF, 0 0C) led to the 
desired macrolactam (-r-)-19u in 21% yield, admixed with other 
triene isomers (34%).27 Silylation of the phenol, liberation of 
the amide N-H with Na(Hg),24 and acetonide removal provided 
the known TBS ether5 of (-r-)-trienomycinol [(+)-20].n Instal­
lation of the side chains and desilylation, as we described 
previously,5 gave (+)-trienomycins A (1) and F (2), identical 
in all respects with the corresponding natural products (1H and 
13C NMR, IR, HRMS, optical rotation, and TLC in three solvent 
systems). 

In summary, we have completed the first total syntheses of 
representative trienomycin antibiotics [i.e., A and F (1 and 2)]. 
The route should likewise provide access to the remaining 
members of the family. The synthesis of (+)-l also constitutes 
a formal total synthesis of mycotrienins I and II (3 and 4). 
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